Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila

نویسندگان

  • Pierre B. Cattenoz
  • Anna Popkova
  • Tony D. Southall
  • Giuseppe Aiello
  • Andrea H. Brand
  • Angela Giangrande
چکیده

High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terminal tendon cell differentiation requires the glide/gcm complex.

Locomotion relies on stable attachment of muscle fibres to their target sites, a process that allows for muscle contraction to generate movement. Here, we show that glide/gcm and glide2/gcm2, the fly glial cell determinants, are expressed in a subpopulation of embryonic tendon cells and required for their terminal differentiation. By using loss-of-function approaches, we show that in the absenc...

متن کامل

Transcriptional control of glial and blood cell development in Drosophila: cis-regulatory elements of glial cells missing.

In Drosophila, glial cell differentiation requires the expression of glial cells missing (gcm) in multiple neural cell lineages, where gcm acts as a binary switch for glial vs. neuronal fate. Thus, the primary event controlling gliogenesis in neural progenitors is the transcription of gcm. In addition, gcm is also required for the differentiation of macrophages, and is expressed in the hemocyte...

متن کامل

The hypoparathyroidism-associated mutation in Drosophila Gcm compromises protein stability and glial cell formation

Differentiated neurons and glia are acquired from immature precursors via transcriptional controls exerted by factors such as proteins in the family of Glial Cells Missing (Gcm). Mammalian Gcm proteins mediate neural stem cell induction, placenta and parathyroid development, whereas Drosophila Gcm proteins act as a key switch to determine neuronal and glial cell fates and regulate hemocyte deve...

متن کامل

Characterization of cis-regulatory elements controlling repo transcription in Drosophila melanogaster.

The glial cells missing (gcm) gene has been identified as a "master regulator" of glial cell fate in the fruit fly Drosophila. However, gcm is also expressed in and required for the development of larval macrophages and tendon cells. Thus, the Gcm protein activates the transcription of different sets of genes in different developmental contexts. How the Gcm protein regulates these different out...

متن کامل

A novel role of the glial fate determinant glial cells missing in hematopoiesis.

Glial cell deficient/Glial cells missing (Glide/Gcm) transcription factor is expressed in all glial precursors of the Drosophila embryo. Gcm is necessary and sufficient to induce glial differentiation but also plays a role in other cell types, by interacting with specific factors. To find potential partners of Gcm which trigger these other pathways, we performed a yeast two-hybrid screen and id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 202  شماره 

صفحات  -

تاریخ انتشار 2016